
November 2003 www.stsc.hill.af.mil 9

The Ravenscar Profile is now estab-
lished as a state-of-the-art model for

building safe and reliable real-time sys-
tems. The profile was originally defined in
1997 at a workshop of international real-
time experts and is named after the village
of Ravenscar in northern England where
the workshop was held. It is specified as a
subset of concurrency features in Ada95
that exhibit determinism in key areas such
as timing, memory usage, and function
behavior. The original definition has been
slightly refined in light of the application
experience, and the final definition is
being incorporated into the next ISO stan-
dard revision of the Ada language [1].

Although the Ravenscar Profile is
specified in Ada terms, it is based on a lan-
guage-independent set of building blocks
that are suitable for constructing typical
real-time systems, and as input to analysis
tools that provide evidence that the con-
currency requirements of the system have
been met.

Traditional methods of implementing
concurrency in a predictable way have
focused on approaches such as using
cyclic executives that repeatedly execute a
set of functions in a fixed order in preset
time frames. However, such approaches
have become inadequate as system com-
plexity has increased and the burden of
maintaining correct static timelines during
system upgrade becomes prohibitive. This
has led to wider acceptance of concurrent
programming as the preferred approach.

Yet the quality of evidence for concur-
rency properties traditionally has been
rather low. This is because guarantees such
as sufficiency of scheduling to meet dead-
lines, accuracy in timing behavior, correct
execution-time ordering of events, and
correct levels of protection for access to
shared data are difficult to establish for all
possible operational scenarios by testing

alone. In addition, the tools that may be
used to provide this kind of evidence
require specialized inputs that define
deterministic timing behavior, often based
on using a specific kind of model or
restricted source language, and supported
by a real-time operating system with total-
ly deterministic timing characteristics.

The advent of implementations of the
Ravenscar Profile, including some with
supporting evidence certifiable to stan-
dards such as Radio Technical
Commission for Aeronautics, Inc.
(RTCA) Defense Order (DO)-178B [2]
level A, heralds the availability of the most
rigorous environment for developing
high-integrity concurrent programs. This
offers a unique opportunity to developers
of real-time and high integrity systems to
be able to demonstrate early in the life
cycle that nonfunctional requirements
(such as failure modes, timing and order-
ing constraints, and predictable resource
usage) are satisfied rather than discovering
deficiencies during the integration phase
when corrections are often very difficult

and costly to implement.
In this article, we present the follow-

ing: the motivation behind the creation of
the Ravenscar Profile, a brief definition of
its specification, the ways in which it may
be used with verification tools to produce
evidence of dependability, and a short
concluding example.

Motivation
The major drivers that influenced the def-
inition of the Ravenscar Profile are as fol-
lows:
• Inclusion of reliable and predictable

building blocks for real-time systems.
• Elimination of non-deterministic and

highly complex concurrency con-
structs.

• Support for a variety of application-
level analytical verification models and
techniques.

• Practical generation of formal evi-
dence of safety and reliability certifica-
tion for the implementation.
These drivers are highly complementa-

ry. The overall goal is twofold. First is the
ability to develop application software that
includes concurrency and interrupt-relat-
ed activity in such a way that is suitable for
analysis by sophisticated verification tools
and techniques. Second is the ability to
show early in the life cycle that the soft-
ware implementation meets high integrity
and safety-critical requirements.

The verification tools can provide evi-
dence to the highest levels of assurance
that the software meets the related
requirements while also being free from
run-time error. Examples of the kinds of
verification tools and techniques that may
be used with the profile include the fol-
lowing:
• Scheduling analyzers and response-

time analyzers to show that all hard
deadlines and data freshness require-

The Ravenscar Profile for
Real-Time and High Integrity Systems

Alan Burns
University of York

The Ravenscar Profile offers a unique opportunity to developers of real-time and high integrity systems. For the first time in
the history of our industry, there is direct support for constructing deterministic, concurrent software within an international
standard programming language. The Ravenscar Profile is founded on state-of-the-art, deterministic concurrency constructs
defined in ISO standard Ada95. This results in a set of building blocks that are basic enough for constructing most types
of real-time software, while also being sophisticated enough to minimize the risk of error associated with using low-level prim-
itives such as not releasing a lock on all paths. These building blocks are also amenable to the many forms of analyses that
can be applied during development to assure the correctness of complex real-time programs, including scheduling and response
time analysis, data and information flow analysis, exception freedom, and formal analysis using theorem provers and model
checkers. As a result, nonfunctional requirements such as timing and ordering constraints and resource utilization can be
established early in the life cycle with consequent reductions in cost, delays, and risk of failure.

Brian Dobbing
Praxis Critical Systems

“The advent of
implementations of

the Ravenscar Profile ...
heralds the availability
of the most rigorous

environment for
developing high-integrity
concurrent programs.”

ments are met.
• Model checkers to show that the

required system states exist and can be
reached, and that no undesired states
can occur.

• Static analyzers and formal proof tools
to show that the code has been cor-
rectly constructed to meet its design
specification and is free from run-time
exceptions.
The motivation behind the execution

environment to support implementations
of the profile is to satisfy the following
real-time and high integrity constraints:
the footprint is small; the scheduling, syn-
chronization, and timing characteristics
are deterministic; the timing accuracy is at
the resolution of the underlying system
clock; and the run-time support library is
simple enough to generate evidence of
predictability, reliability, and safety.

Definition
The Ravenscar Profile is formally defined
in terms of Ada95 constructs, and this
definition has been accepted for inclusion
in the revision to the ISO standard defini-
tion of the Ada language that is scheduled
for 2005 release. The full definition is con-
tained in a guide on using the Ravenscar
Profile for high integrity systems [3]. The
main components of a Ravenscar pro-
gram are as follows:
1. A fixed set of threads that may be

cyclic (time-triggered) or aperiodic
(event-triggered), including a thread
parameterization mechanism.

2. A fixed set of protected objects that
provide mutually exclusive access to
shared data, including a protected
object parameterization mechanism.

3. A fixed set of synchronization objects
that provide suspend/resume capabili-
ty for threads, including the communi-

cation of protected data as part of
resumption.

4. A fixed set of interrupt handlers that
may store data under mutually exclu-
sive protection.

5. A synchronous delay facility based on
absolute time values that are accurate
to the resolution of the underlying sys-
tem clock.

6. A deterministic fixed-priority preemp-
tive thread scheduling policy.

7. A policy to enforce mutual exclusion
that prevents deadlocks and minimizes
the worst-case time that a thread is
blocked due to contention.
Figure 1 illustrates the combination of

some of these components. In this small
example, a hardware interrupt is delivered
when fresh external data is available to the
system. The interrupt handler stores the
data and triggers a response thread to
process it. The processed data is stored in
a shared data store, and a cyclic thread
periodically obtains the latest version of
this data to further process it to drive a
system output.

Verification
Each thread of control is independently
verified for conformance to its specifica-
tion. This includes a demonstration of
meeting its functional, performance, and
resource utilization requirements, for
example, by performing requirements-
based testing or by using static analysis
methods. Then the program as a whole is
verified against all of its concurrency
requirements, which include the following:
• Synchronization and communication

interactions.
• Freshness of shared data.
• Execution order dependencies.
• Timing constraints such as meeting

deadlines.

In each of these cases, sophisticated
tools and techniques exist to automate the
verification process to show that concur-
rency requirements have been met and to
produce supporting evidence for a regula-
tory authority if necessary. The tool-based
approach can be used early in the devel-
opment life cycle and also simplifies the
process of re-verification (and perhaps re-
certification) after the system has under-
gone modification during maintenance or
a midlife update.

In the rest of this section we look at
three currently supported techniques for
concurrency verification:
1. Static analysis.
2. Scheduling analysis.
3. Formal analysis.

Static Analysis
Existing static analysis tools and tech-
niques can be used to achieve high levels
of proof of correctness and absence of
run-time errors in sequential programs,
for example, see [4, 5]. The SPARK lan-
guage recently has been extended to sup-
port the Ravenscar Profile as its concur-
rency model in such a way as to preserve
the same level of integrity assurance as is
possible for sequential programs [6]. This
is a major advance in the extent of achiev-
able confidence that concurrent programs
are provably correct and cannot result in
run-time exceptions being raised.

At the thread level, relating to an indi-
vidual task or interrupt handler, the analy-
sis is largely unaffected by the addition of
concurrency constructs. In particular, the
static analysis does not consider the tem-
poral aspects – for example, the thread-
level data and information flow analysis
assumes that the thread will be activated
after suspension at some stage.

The main change to existing sequential
flow analysis is that references to share-
able, protected objects must be considered
volatile at all times because the value read
may be generated by another program
thread at any time. In particular, if a
thread writes a shareable, protected object
and later reads it, there can be no assump-
tion that the value written will still be there
when the read is performed. This volatili-
ty is already supported for sequential pro-
grams that access external data such as via
an input/output port. Having modeled
the volatility of shared data in this way, the
existing benefits of proof of correctness
and absence of run-time errors can be
realized for each thread.

At the program level, the major exten-
sion to static analysis to support concur-
rency is to be able to describe the intend-
ed data and information flow across

Development of Real-Time Software

10 CROSSTALK The Journal of Defense Software Engineering November 2003

Interrupt
Data

Event-
Response

Thread
Hardware Interrupt

Get

Trigger

Time-
Triggered

Thread

Interrupt
Handler

Store

Processing

Processed
Data

GetRefresh

Processing

Clock Trigger

System
Output

Put

Figure 1: Examples of Ravenscar Profile Building Blocks in Combination

thread boundaries, and then to verify that
the actual program achieves it. The check
is realized by the composition of each
thread-level flow analysis with those of
the thread interactions via shareable, pro-
tected objects. The intended program-
wide flow relation can then be compared
automatically with the computed actual
flow, and any discrepancies reported as
errors.

A valuable side effect of this analysis is
in the assurance that the constructed pro-
gram is complete. If a thread were inad-
vertently omitted from the program build,
the computed flow analysis would not take
into account the data interactions caused
by that thread – hence the computed flow
analysis would report an error when com-
pared with the intended flows.

Scheduling Analysis
Recent research in scheduling theory has
found that accurate analysis of real-time
behavior is possible given a careful choice
of the scheduling/dispatching method
together with suitable restrictions on the
interactions allowed between threads, for
example, see [7] chapter 13. An example
of a scheduling method is preemptive fixed
priority scheduling. Example analysis
schemes are Rate Monotonic Analysis (RMA)
and Response Time Analysis (RTA).
Preemptive fixed priority scheduling is
generally used with a deterministic mutual
exclusion policy such as Priority Ceiling
Protocol (PCP) to avoid unbounded priori-
ty inversion and deadlocks. This provides
a model suitable for the scheduling analy-
sis of concurrent real-time systems that is
also scaleable to programs for distributed
systems.

This model supports cyclic and aperiodic
threads that communicate and synchro-
nize in a controlled way, and that each may
have timing deadlines. These deadlines
may be the following:
• Hard. When the failure to meet the

deadline is an unacceptable failure of
the system.

• Firm. When occasional missed dead-
lines can be tolerated but there is no
value in completing the action when
the deadline is missed.

• Soft. When occasional missed dead-
lines can be tolerated and there is value
in completing the action when the
deadline is missed.
The Ravenscar Profile requires using

the standard preemptive fixed priority
thread scheduling policy known as First-In-
First-Out (FIFO)_Within_Priorities, and
using PCP.

Extensive and mature tool support
exists for both RMA and RTA, and for the

static simulation of concurrent real-time
programs. The primary aim of analyzing
the real-time behavior of a system is to
determine whether it can be scheduled in
such a way that it is guaranteed to meet its
timing constraints. Whether the timing
constraints are appropriate for meeting
the requirements of the system is not an
issue for scheduling analysis. Such verifica-
tion requires a more formal model of the
program and the application of tech-
niques such as model checking (see
below).

Formal Analysis
The formal analysis of concurrent pro-
grams has been a fruitful research topic
for a number of years. Current standard
techniques allow many important proper-
ties of a concurrent program to be stati-
cally checked, for example the following:
• Dependability. The set of threads

should not enter any undesirable state
(for example deadlock, livelock).

• Liveness. All desirable states of the
set of threads must be reached eventu-
ally (that is, useful progress should
always be made).
In a real-time concurrent system, live-

ness becomes bounded liveness since desir-
able states must be reached by known
deadlines.

Standard programming languages do
not have their semantics defined in a for-
mal mathematical way. Hence it is neces-
sary to link a model of the program to the
program itself. This link cannot be formal,
but can be precise. Using standard pat-
terns as found in the Ravenscar Profile
helps this linkage. The formal model
could be derived from the code or, more
likely in an engineering process, the model
is derived from requirements, and the
code is obtained via a series of refine-
ments from the model.

Verification is via either a proof-of-
theoretic approach or model checking. An
algebraic description can be proved to be
deadlock free, for example, by using a the-
orem prover. Alternatively, a state transi-
tion description can be exercised by an
exhaustive search of the set of states the
program can enter. This checking of the
model can deduce that all desirable states,
and no undesirable states, can be reached.

For real-time systems, it is possible to
add time parameters to the concurrency
model and to then validate temporal
aspects of the program. A common for-
malism for this type of state transition
system is called a timed automaton. Tool
support for model checking sets of timed
automata is well advanced. One of the
very useful features of model checking

tools is that they all produce a well-defined
counter example for any failed check.

There is already experience using
model checking to validate Ravenscar pro-
grams. It is possible to add worst-case and
best-case execution times for state transi-
tions and to then check that deadlines are
never missed. Alternatively, model check-
ing can be used to validate the top-level
description of the timing constraints, leav-
ing scheduling analysis to check deadline
satisfaction once execution times from the
implementation are known. Typical of the
verification that can be achieved with this
approach is to check some end-to-end
deadline through a number of threads,
assuming that each thread itself meets its
timing requirements.

Implementations
There are several mature implementations
of the Ravenscar Profile in Ada95. These
include Ada run-time systems that execute
directly on the target board, and those that
rely on services provided by a commercial
off-the-shelf (COTS) real-time operating
system (RTOS). Some of these implemen-
tations are part of systems that have
achieved formal safety certification to the
highest integrity level, for example Radio
Technical Commission for Aeronautics,
Inc. (RTCA)/ Defense Order (DO)-178B
[2] Level A. In addition, there is growing
support for the profile’s building blocks
within COTS RTOSs in a high-level lan-
guage-neutral manner such that C pro-
grams can use them, for example.

Example
We can apply concurrency verification
techniques to the simple example in
Figure 1. By assigning deadlines to both
threads, model checking would be able to
verify that data from the interrupt was suf-
ficiently fresh when used to influence the
system output. Moreover once the execu-
tion times were known for the two threads
(and the interrupt handler), it would be
possible to use scheduling analysis to con-
firm that the deadlines for each thread
would indeed be met in all possible execu-
tions of the program. Finally, static analy-
sis could show correct system-wide data
and information flow, for example, that
the occurrence of the interrupt directly
affects the system output, as well as
absence of run-time errors.

Figure 2 (see page 12) shows some
Ada code fragments for the expression of
the example in Figure 1 using Ravenscar
Profile constructs.

Conclusion
The Ravenscar Profile offers a unique

November 2003 www.stsc.hill.af.mil 11

The Ravenscar Profile for Real-Time and High Integrity Systems

Development of Real Time Software

opportunity to developers of real-time
and high integrity systems to establish
high levels of confidence in the verifica-
tion of concurrency properties and
requirements early in the development life
cycle. The profile defines a set of building
blocks for constructing deterministic,
concurrent software. The benefits of
using the Ravenscar Profile include porta-
bility via international standardization,
plus support from a wide range of sophis-
ticated analysis tools. In addition, there
exist implementations of the profile to the
highest levels of safety certification. As a
result, there is the opportunity to mini-
mize the risk of deploying complex con-
current systems containing errors that are
hard to find by testing methods alone,
both during initial production and during
long-term maintenance.◆

References
1. Ada95 Reference Manual. Cambridge,

MA: Intermetrics, 1995. International
Standard ISO/IEC 8652:1995(E)
<www.adahome.com/rm95> and
<www.adapower.com/rm95/index.
html>.

2. RTCA-EUROCAE. Software Con-

siderations in Airborne Systems and
Equipment Certification. DO-178B/
ED-12B. Dec. 1992 <www.rtca.org>.

3. Burns, Alan, Brian Dobbing, and
Tuillo Vardanega. “Guide for the Use
of the Ada Ravenscar Profile in High
Integrity Systems.” York, United
Kingdom: University of York, Jan.
2003. Technical Report YCS 348
<www.cs.york.ac.uk/ftpdir/reports/
YCS-2003-348.pdf>.

4. Barnes, John. High Integrity Software
– The SPARK Approach to Safety and
Security. Addison-Wesley, 25 Apr.
2003.

5. Chapman, Rod, and Peter Amey.
Industrial Strength Exception Free-
dom. Proc. of ACM SIGAda, Hous-
ton, TX, 2002 <www.sparkada.com>.

6. Amey, Peter, and Brian Dobbing. High
Integrity Ravenscar. Proc. of Reliable
Software Technologies – Ada-Europe
2003, Toulouse, France, June 2003.
<www.sparkada.com/downloads/
high_ integrity_ravenscar. pdf>.

7. Wellings, Andrew J., and Alan Burns.
Real-Time Systems and Programming
Languages. 3rd ed. Addison-Wesley, 5
Apr. 2001.

12 CROSSTALK The Journal of Defense Software Engineering November 2003

protected Interrupt_Data is
 procedure Handler; -- The interrupt handler code
 pragma Attach_Handler (Handler, Interrupt);
 entry Get (New_Data : out Raw_Data); -- Retrieves the interrupt data
private
 The_Interrupt_Data : Raw_Data;
end Interrupt_Data;

protected Processed_Data is
 procedure Refresh (New_Data : Data); -- Updates the processed data
 procedure Get (Latest_Data : out Data); -- Gets the latest data
private
 The_Processed_Data : Data;
end Processed_Data;

task body Event_Response is
begin
 loop
 Interrupt_Data.Get (New_Data); -- Waits until new interrupt data is available
 Process (New_Data, Output_Data); -- Processes it
 Processed_Data.Refresh (Output_Data); -- Writes the new processed data
 end loop;
end Event_Response;

task body Time_Triggered is
begin
 loop
 delay until Next_Period; -- Waits until start of next cycle
 Processed_Data.Get (Latest_Data); -- Gets the latest processed data
 Process (Latest_Data, New_Output); -- Processes it further
 System_Output.Write (New_Output); -- Writes the new system output
 end loop;
end Time_Triggered;

Figure 2: Ada Code Fragments of Ravenscar Profile Constructs

About the Authors

Alan Burns is head of
the Computer Science
Department, personal
chair, and professor at
the University of York,
which he joined in

January 1990. He has worked for
many years on a number of different
aspects of real-time systems engi-
neering. His research activities have
covered all major aspects of real-time
and safety critical systems. Burns
recently retired as chair of the
Institute of Electrical and Electron-
ics Engineers’ Technical Committee
on Real Time and has chaired the
Real-Time Systems Symposium. He
has authored/co-authored more than
350 papers and reports and eight
books. His teaching activities include
courses in Operating Systems, Sched-
uling, and Real-Time Systems.

Department of Computer Science
University of York
Heslington
YO105DD
York, U.K.
Phone: +44 1904 432779
E-mail: alan.burns@cs.york.ac.uk

Brian Dobbing is a
principal consultant at
Praxis Critical Sys-
tems. He was a key
member of the Inter-
national Real-Time

Ada Workshop that defined the first
version of the Ravenscar Profile,
and has been heavily involved in the
evolution of the profile ever since.
He was the chief architect of the
first implementation of the profile,
the Aonix product ObjectAda/
Raven, that achieved formal safety
certification to RTCA DO-178B
Level A. He is a member of ISO
Working Group 9 (Ada) and of the
ISO Annex H Rapporteur Group
(high integrity systems).

Praxis Critical Systems Ltd
20 Manvers St.
BATH BA1 1PX
U.K.
Phone: +44 1225 823762
E-mail:brian.dobbing@praxis-cs.co.uk

